Non-radial instabilities of isothermal Bondi accretion with a shock: vortical-acoustic cycle vs post-shock acceleration
نویسنده
چکیده
The linear stability of isothermal Bondi accretion with a shock is studied analytically in the asymptotic limit of high incident Mach number M1. The flow is unstable with respect to radial perturbations as expected by Nakayama (1993), due to post-shock acceleration. Its growth time scales like the advection time from the shock rsh to the sonic point rson. The growth rate of non-radial perturbations l = 1 is higher by a factor M 2/3 1 , and is therefore intermediate between the advection and acoustic frequencies. Besides these instabilities based on post-shock acceleration, our study revealed another generic mechanism based on the cycle of acoustic and vortical perturbations between the shock and the sonic radius, independently of the sign of post-shock acceleration. The vorticalacoustic instability is fundamentally non-radial. It is fed by the efficient excitation of vorticity waves by the isothermal shock perturbed by acoustic waves. The growth rate exceeds the advection rate by a factor logM1. Unstable modes cover a wide range of frequencies from the fundamental acoustic frequency ∼ c/rsh up to a cut-off ∼ c/rson associated with the sonic radius. The highest growth rate is reached for l = 1 modes near the cut-off. The additional cycle of acoustic waves between the shock and the sonic radius is responsible for variations of the growth rate by a factor up to 3 depending on its phase relative to the vortical-acoustic cycle. The instability also exists, with a similar growth rate, below the fundamental acoustic frequency down to the advection frequency, as vorticity waves are efficiently coupled to the region of pseudosound. These results open new perspectives to address the stability of shocked accretion flows.
منابع مشابه
Entropic-acoustic instability of shocked Bondi accretion I. What does perturbed Bondi accretion sound like ?
In the radial flow of gas into a black hole (i.e. Bondi accretion), the infall of any entropy or vorticity perturbation produces acoustic waves propagating outward. The dependence of this acoustic flux on the shape of the perturbation is investigated in detail. This is the key process in the mechanism of the entropic-acoustic instability proposed by Foglizzo& Tagger (2000) to explain the instab...
متن کاملA fresh look at the unstable simulations of Bondi - Hoyle - Lyttleton accretion
The instability of Bondi-Hoyle-Lyttleton accretion, observed in numerical simulations, is analyzed through known physical mechanisms and possible numerical artefacts. The mechanisms of the longitudinal and transverse instabilities, established within the accretion line model, are clarified. They cannot account for the instability of BHL accretion at moderate Mach number when the pressure forces...
متن کاملNon-axisymmetric instabilities in shocked accretion flows with differential rotation
The linear stability of a shocked isothermal accretion flow onto a black hole is investigated in the inviscid limit. The outer shock solution, which was previously found to be stable with respect to axisymmetric perturbations, is, however, generally unstable to non-axisymmetric ones. Eigenmodes and growth rates are obtained by numerical integration of the linearized equations. The mechanism of ...
متن کاملEntropic-acoustic instability in shocked accretion flows
A new instability mechanism is described in accretion flows where the gas is accelerated from a stationary shock to a sonic surface. The instability is based on a cycle of acoustic and entropic waves in this subsonic region of the flow. When advected adiabatically inward, entropy perturbations trigger acoustic waves propagating outward. If a shock is present at the outer boundary, acoustic wave...
متن کاملNon-axisymmetric instabilities in shocked adiabatic accretion flows
We investigate the linear stability of a shocked accretion flow onto a black hole in the adiabatic limit. Our linear analyses and numerical calculations show that, despite the post-shock deceleration, the shock is generally unstable to non-axisymmetric perturbations. The simulation results of Molteni, Tóth & Kuznetsov can be well explained by our linear eigenmodes. The mechanism of this instabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002